核酸适配体在肿瘤靶向治疗中的研究进展

丁艳芳, 王瑀彤, 赵晶, 王长远, 李磊

中国药学杂志 ›› 2017, Vol. 52 ›› Issue (8) : 609-616.

PDF(1773 KB)
PDF(1773 KB)
中国药学杂志 ›› 2017, Vol. 52 ›› Issue (8) : 609-616. DOI: 10.11669/cpj.2017.08.001
综述

核酸适配体在肿瘤靶向治疗中的研究进展

  • 丁艳芳a, 王瑀彤b, 赵晶b, 王长远b, 李磊b*
作者信息 +

Research Progress of Aptamer-Functionalized Agents for Targeted Cancer Therapy

  • DING Yan-fanga, WANG Yu-tongb, ZHAO Jingb, WANG Chang-yuanb, LI Leib*
Author information +
文章历史 +

摘要

理想的肿瘤治疗制剂能特异性地靶向于肿瘤细胞,起到安全有效的药物传递作用。核酸适配体非同寻常的分子识别能力使得其成为最具前景的生物靶向分子。笔者从结合方式、载体种类等方面,以有代表性的核酸适配体与靶向制剂结合文献资料为依据,进行归纳、总结,综述了近5年来核酸适配体用于靶向肿瘤制剂构建的最新研究进展,并对存在的问题进行了分析与展望。

Abstract

Ideal preparation of cancer therapy could specifically target to tumor cells, serving as safe and effective drug delivery system. With peculiar molecular recognition ability, aptamers become the most promising biological target molecules. This review was based on representative literatures,and the data was summarized and analyzed. It summarizes the latest research progress of aptamers modified targeted tumor preparation in the past five years from tethered way and carriers type, and the existing problems are analyzed and prospected.

关键词

核酸适配体 / 纳米载药系统 / 肿瘤靶向治疗 / 靶向药物传递

Key words

aptamer / nanoparticle drug delivery system / targeted cancer therapy / targeted drug delivery

引用本文

导出引用
丁艳芳, 王瑀彤, 赵晶, 王长远, 李磊. 核酸适配体在肿瘤靶向治疗中的研究进展[J]. 中国药学杂志, 2017, 52(8): 609-616 https://doi.org/10.11669/cpj.2017.08.001
DING Yan-fanga,WANG Yu-tongb,ZHAO Jingb,WANG Chang-yuanb,LI Leib*. Research Progress of Aptamer-Functionalized Agents for Targeted Cancer Therapy[J]. Chinese Pharmaceutical Journal, 2017, 52(8): 609-616 https://doi.org/10.11669/cpj.2017.08.001
中图分类号: R944   

参考文献

[1] REINEMANN C, STREHLITZ B. Aptamer-modified nanoparticles and their use in cancer diagnostics and treatment [J]. Swiss Medical Weekly, 2014, 144:w13908.
[2] ZHOU G, WILSON G, HEBBARD L, et al. Aptamers:a promising chemical antibody for cancer therapy [J]. Oncotarget, 2016, 7 (12):13446-13463.
[3] DARMOSTUK M, RIMPELOVA S, GBELCOVA H, et al. Current approaches in SELEX:an update to aptamer selection technology [J]. Biotechnol Adv, 2015, 33 (6 Pt 2):1141-1161.
[4] OZER A, PAGANO J M, LIS J T, et al. New technologies provide quantum changes in the scale, speed, and success of SELEX methods and aptamer characterization [J]. Mol Ther Nucleic Acids, 2014, 3:e183.
[5] ZHOU J, ROSSI J J. Evolution of cell-type-specific RNA aptamers via live cell-based SELEX [J]. Methods Mol Biol, 2016, 1421:191-214.
[6] LAVU P S, MONDAL B, RAMLAL S, et al. Selection and characterization of aptamers using a modified Whole-Cell Bacterium SELEX for the detection of salmonella enterica serovar typhimurium [J]. ACS Comb Sci, 2016, 18 (6):292-301.
[7] ZHU B, HERNANDEZ A, TAN M, et al. Synthesis of 2'-Fluoro RNA by Syn5 RNA polymerase [J]. Nucleic Acids Res, 2015,43 (14):e94.
[8] MEYER A J, GARRY D J, HALL B, et al. Transcription yield of fully 2'-modified RNA can be increased by the addition of thermostabilizing mutations to T7 RNA polymerase mutants [J]. Nucleic Acids Res, 2015, 43 (15):7480-7488.
[9] LAURIDSEN L H, ROTHNAGEL J A, VEEDU R N. Enzymatic recognition of 2'-modified ribonucleoside 5'-triphosphates:towards the evolution of versatile aptamers [J]. Chembiochem, 2012, 13 (1):19-25.
[10] LAPA S A, CHUDIONOV A V, TIMOFEEV E N. The toolbox for modified aptamers [J]. Mol Biotechnol, 2016,58(2):79-92.
[11] LIU B, ZHANG J, LIAO J, et al. Aptamer-functionalized nanoparticles for drug delivery [J]. J Biomed Nanotechnol, 2014, 10 (11):3189-3203.
[12] HUANG Y F, SHANGGUAN D, LIU H, et al. Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells [J]. Chembiochem,2009, 10 (5):862-868.
[13] TRINH T L, ZHU G, XIAO X, et al. A synthetic aptamer-drug adduct for targeted liver cancer therapy [J]. PLoS One, 2015, 10 (11):e0136673.
[14] YANG L, ZHANG X, YE M, et al. Aptamer-conjugated nanomaterials and their applications [J]. Adv Drug Deliv Rev, 2011, 63 (14-15):1361-1370.
[15] WANG J, ZHU G, YOU M, et al. Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy [J]. ACS Nano, 2012, 6(6):5070-5077.
[16] SHIAO Y S, CHIU H H, WU P H, et al. Aptamer-functionalized gold nanoparticles as photoresponsive nanoplatform for co-drug delivery [J]. ACS Appl Mater Interfaces, 2014, 6 (24), 21832-21841.
[17] LUO Y L, SHIAO Y S, HUANG Y F. Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy [J]. ACS Nano, 2011, 5 (10):7796-7804.
[18] PALA K, SERWOTKA A, JELEN F, et al. Tumor-specific hyperthermia with aptamer-tagged superparamagnetic nanoparticles [J]. Int J Nanomed, 2014, 9(1):67-76.
[19] AZHDARZADEH M, ATYABI F, SAEI A A, et al. Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer [J]. Colloids Surf B Biointerfaces, 2016, 143:224-232.
[20] HE Z M, ZHANG P H, LI X, et al. Targeted DNAzyme-nanocomposite probe equipped with built-in Zn2+ arsenal for combined treatment of gene regulation and drug delivery [J]. Sci Rep, 2016, 6:22737.
[21] SAVLA R, TARATULA O, GARBUZENKO O, et al. Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer [J]. J Controlled Release, 2011, 153 (1):16-22.
[22] TAGHAVI S, HASHEMNIA A, MOSAFFA F, et al. Preparation and evaluation of polyethylenimine-functionalized carbon nanotubes tagged with 5TR1 aptamer for targeted delivery of Bcl-xL shRNA into breast cancer cells [J]. Colloids Surf B Biointerfaces, 2016, 140:28-39.
[23] XIE X, LI F, ZHANG H, et al. EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery [J]. Eur J Pharm Sci, 2016, 83:28-35.
[24] TANG Y, HU H, ZHANG M G, et al. An aptamer-targeting photoresponsive drug delivery system using "off-on" graphene oxide wrapped mesoporous silica nanoparticles [J]. Nanoscale, 2015, 7(14):6304-6310.
[25] MOOSAVIAN S A, ABNOUS K, BADIEE A, et al. Improvement in the drug delivery and anti-tumor efficacy of PEGylated liposomal doxorubicin by targeting RNA aptamers in mice bearing breast tumor model [J]. Colloids Surf B Biointerfaces, 2016, 139:228-236.
[26] SONG X, REN Y, ZHANG J, et al. Targeted delivery of doxorubicin to breast cancer cells by aptamer functionalized DOTAP/DOPE liposomes [J]. Oncol Rep, 2015, 34 (4):1953-1960.
[27] ZHANG J, CHEN R, CHEN F, et al. Nucleolin targeting AS1411 aptamer modified pH-sensitive micelles:a dual-functional strategy for paclitaxel delivery [J]. J Controlled Release, 2015, 213:137-138.
[28] LI X, YU Y, JI Q, et al. Targeted delivery of anticancer drugs by aptamer AS1411 mediated Pluronic F127/cyclodextrin-linked polymer composite micelles [J]. Nanomedicine, 2015, 11 (1):175-184.
[29] GUO J, GAO X, SU L, et al. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery [J]. Biomaterials, 2011, 32 (31):8010-8020.
[30] PROW T W, YU C, HU Y, et al. Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro [J]. PLoS One, 2011, 6 (9):e24077.
[31] HU X, TULSIERAM K L, ZHOU Q, et al. Polymeric nanoparticle-aptamer bioconjugates can diminish the toxicity of mercury in vivo [J]. Toxicol Lett, 2012, 208 (1):69-74.
[32] ARAVIND A, JEYAMOHAN P, NAIR R, et al. AS1411 Aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery [J]. Biotechnol Bioeng, 2012, 109 (11):2920-2931.
[33] LI L, XIANG D, SHIGDAR S, et al. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells [J]. Int J Nanomed, 2014, 9(1):1083-1096.
[34] GHASEMI Z, DINARVAND R, MOTTAGHITALAB F, et al. Aptamer decorated hyaluronan/chitosan nanoparticles for targeted delivery of 5-fluorouracil to MUC1 overexpressing adenocarcinomas [J]. Carbohydr Polym, 2015, 121:190-198.
[35] ZHAO N, BAGARIA H G, WONG M S, et al. A nanocomplex that is both tumor cell-selective and cancer gene-specific for anaplastic large cell lymphoma [J]. J Nanobiotechnol, 2011, 9:2.
[36] YANG J, XIE S X, HUANG Y, et al. Prostate-targeted biodegradable nanoparticles loaded with androgen receptor silencing constructs eradicate xenograft tumors in mice [J]. Nanomedicine (Lond), 2012, 7 (9):1297-1309.
[37] ASKARIAN S, ABNOUS K, TAGHAVI S, et al. Cellular delivery of shRNA using aptamer-conjugated PLL-alkyl-PEI nanoparticles [J]. Colloids Surf B Biointerfaces, 2015, 136:355-364.
[38] TAGHDISI S M, DANESH N M, RAMEZANI M, et al. Double targeting and aptamer-assisted controlled release delivery of epirubicin to cancer cells by aptamers-based dendrimer in vitro and in vivo [J]. Eur J Pharm Biopharm, 2016, 102:152-158.
[39] ZHANG H, MA Y, XIE Y, et al. A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery [J]. Sci Rep, 2015, 5:10099.
[40] WU X, DING B, GAO J, et al. Second-generation aptamer-conjugated PSMA-targeted delivery system for prostate cancer therapy [J]. Int J Nanomed, 2011, 6:1747-1756.
[41] WU J, SONG C, JIANG C, et al. Nucleolin targeting AS1411 modified protein nanoparticle for antitumor drugs delivery [J]. Mol Pharm, 2013, 10 (10):3555-3563.
[42] GILBOA-GEFFEN A, HAMAR P, LE M T, et al. Gene knockdown by EpCAM aptamer-siRNA chimeras suppresses epithelial breast cancers and their tumor-initiating cells [J]. Mol Cancer Ther,2015, 14 (10):2279-2291.
[43] SUBRAM N, KANWAR J R, KANWAR R K, et al. EpCAM aptamer-siRNA chimera targets and regress epithelial cancer [J]. PLoS One, 2015, 10(7):e0132407.
[44] NI X, ZHANG Y, ZENNAMI K, et al. Systemic administration and targeted radiosensitization via chemically synthetic aptamer-siRNA chimeras in human tumor xenografts [J]. Mol Cancer Ther, 2015, 14 (12):2797-2804.

基金

国家自然科学基金资助项目(81202484)
PDF(1773 KB)

Accesses

Citation

Detail

段落导航
相关文章

/